Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 129
Фильтр
Добавить фильтры

Годовой диапазон
1.
Indonesian Journal of Cancer Chemoprevention ; 13(3):195-206, 2022.
Статья в английский | CAB Abstracts | ID: covidwho-20239622

Реферат

COVID-19 is an infectious disease caused by Severe Acute Respiratory Syndrome (SARS-CoV-2), causing a global health emergency as a pandemic disease. The lack of certain drug molecules or treatment strategies to fight this disease makes it worse. Therefore, effective drug molecules are needed to fight COVID-19. Non Structural Protein (NSP5) or called Main Protease (Mpro) of SARS CoV 2, a key component of this viral replication, is considered a key target for anti-COVID-19 drug development. The purpose of this study is to determine whether the compounds in the Melaleuca leucadendron L. plant such as 1,8-cineole, terpene, guaiol, linalol, a-selinenol, beta-eudesmol and P-eudesmol are predicted to have antiviral activity for COVID-19. Interaction of compounds with NSP5 with PDB code 6WNP analyzed using molecular docking with Molegro Virtual Docker. Based on binding affinity, the highest potential as an anti-viral is Terpineol with binding energy (-119.743 kcal/mol). The results of the interaction showed that terpinol has similarities in all three amino acid residues namely Cys 145, Gly 143, and Glu 166 with remdesivir and native ligand. Melaleuca leucadendron L. may represent a potential herbal treatment to act as: COVID-19 NSP5, however these findings must be validated in vitro and in vivo.

2.
Int J Mol Sci ; 24(11)2023 May 31.
Статья в английский | MEDLINE | ID: covidwho-20238922

Реферат

Despite the fact that coronavirus disease 2019 (COVID-19) treatment and management are now considerably regulated, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still one of the leading causes of death in 2022. The availability of COVID-19 vaccines, FDA-approved antivirals, and monoclonal antibodies in low-income countries still poses an issue to be addressed. Natural products, particularly traditional Chinese medicines (TCMs) and medicinal plant extracts (or their active component), have challenged the dominance of drug repurposing and synthetic compound libraries in COVID-19 therapeutics. Their abundant resources and excellent antiviral performance make natural products a relatively cheap and readily available alternative for COVID-19 therapeutics. Here, we deliberately review the anti-SARS-CoV-2 mechanisms of the natural products, their potency (pharmacological profiles), and application strategies for COVID-19 intervention. In light of their advantages, this review is intended to acknowledge the potential of natural products as COVID-19 therapeutic candidates.


Тема - темы
Biological Products , COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines , Biological Products/pharmacology , Biological Products/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
3.
International Journal of Life Science and Pharma Research ; 13(2):L99-L111, 2023.
Статья в английский | Web of Science | ID: covidwho-2328170

Реферат

The severe acute respiratory syndrome produced by COVID-19 is a highly infectious and pathogenic viral infection. Many COVID-19 patients have secondary bacterial infections, which enhance disease and increase death, particularly when requiring invasive mechanical ventilation. One of the most important medicinal mushrooms, Ganoderma lucidum, has been used for food, feed, and medication since the dawn of humanity. The present investigation aims to discover the potential of the medicinal mushroom Ganoderma lucidum inhibited multidrug-resistant isolates from secondary infection of Covid-19 patients. Isolation and identification of urine samples from secondary infection of post-Covid-19 patients and evaluate the antibiotic sensitivity assay, as identification of bioactive compounds, anti-inflammatory and antioxidant activity from Ganoderma lucidum. Totally 6 clinical urine samples were collected from the age group 45 to 60;3 were male, and 3 were female. In total, nine bacteria and 10 fungi were isolated and identified. As antibiotic sensitivity assays of ceftriaxone, fluoroquinolones, azithromycin and amphotericin, nystatin and fluconazole were performed by the disc diffusion method against bacteria and fungi, the zone of inhibition was maximal in Klebsiella pneumoniae and Fusarium oxysporum. The aqueous and ethanolic extracts of Ganoderma lucidum were analyzed for the bioactive compounds, viz., steroids, flavonoids, alkaloids and phenolic compounds. The effect of the anti-inflammatory activity of the aqueous extract was excellent. The activity of the DPPH assay was maximum in aqueous and ethanolic extracts of all concentrations (100 to 500 ml). Antibiotic resistance could probably rise due to the frequent prescription of broad-spectrum empiric antimicrobials to COVID-19 patients. Hence, Ganoderma lucidum can be exploited to prevent secondary infection in COVID-19 patients.

4.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(10):1076-1083, 2022.
Статья в Китайский | CAB Abstracts | ID: covidwho-2323056

Реферат

Swine acute diarrhea syndrome coronavirus (SADS-CoV), a newly discovered enteric coronavirus, is the etiological agent that causes severe clinical diarrhea and intestinal pathological damage in piglets. In this study, Vero E6 and IPI-2I cells were pretreated with different concentrations of glycyrrhizin (GLY) for 2 hours, and then infected with different concentrations of SADSCoV, aiming to investigate the inhibitory effect of GLY on SADS-CoV. Western blot and TCID50 results revealed a significantly decreased N protein expression and viral titer, indicating that GLY can inhibit the infection of SADS-CoV. Vero E6 and IPI-2I cells were pretreated with different concentrations of GLY for 2 hours and infected with SADS-CoV. Western blot results showed that when the concentration of GLY was 0.8 mmol/L, the expression of N protein decreased significantly, indicating that GLY inhibited the invasion of the virus. At first, cells were treated with 0.4 mmol/L GLY, and cell samples were collected at 2 hours, 6 hours and 12 hours after being infected with SADS-CoV for analysis, and the expression of N protein were found to be significantly reduced at all points, indicating that GLY had a significant inhibitory effect on the replication of the virus. GLY is a competitive inhibitor of high mobility group box 1 (HMGB1), and the receptors of HMGB1 mainly include TLR4 and RAGE. Based on this fact, the mutant plasmid at the key sites of HMGB1 (C45S, C106S, C45/106S) and the siRNA of the RAGE receptor were transfected to Vero E6 cells and infected with SADS-CoV, and the cell supernatant and samples were harvested. The western blot and TCID50 results showed that the expression of N protein and the virus titer were decreased, suggesting that GLY exerts its function by affecting the binding of HMGB1/TLR4/RAGE during SADS-CoV infection. To further explore the signaling pathway through which GLY functions, Vero E6 and IPI-2I cells were inoculated with SADS-CoV, and cell samples were harvested, western blot was used to detect the changes of MAPK proteins. The results showed that the protein expression levels of p-p38, p-JNK and p-ERK were up-regulated in the early and late stages, indicating that the MAPK pathway was activated by SADS-CoV infection. Vero E6 and IPI-2I were pretreated with different concentrations of GLY and TLR4 inhibitor TAK for 2 hours and infected with SADS-CoV. Protein samples were harvested and analysed by western blot which showed a decreased p-JNK and N proteins, while other proteins showed no significant changes. These results indicated that GLY and TAK regulated the phosphorylation of JNK but did not regulate the phosphorylation of p38 and ERK. Also, Vero E6 cells were treated with HMGB1 antibody, the siRNA of HMGB1 and HMGB1 mutants plasmid, and infected with SADS-CoV. Protein samples were harvested, western blot results showed that phosphorylation of JNK decreased, indicating that HMGB1 affected JNK phosphorylation. Finally, Vero E6 and IPI-2I cells were pretreated with different concentrations of JNK inhibitor SP600125 to infect SADS-CoV, western blot, TCID50 and IFA results showed that the expression of N protein and virus titer, as well as virus replication were reduced, indicating that SP600125 inhibited virus replication. In conclusion, our results revealed that GLY can inhibit in vitro replication of SADS- CoV, mainly through the HMGB1/TLR4/JNK signaling pathway. The discovery of this pathway provides theoretical support for the research of novel anti-SADS-CoV drugs.

5.
Journal of the Chilean Chemical Society ; 67(3):5656-5661, 2022.
Статья в английский | CAB Abstracts | ID: covidwho-2326837

Реферат

The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China, in December 2019 and quickly spread across the worldwide. It becomes a global pandemic and risk to the healthcare system of almost every nation around the world. In this study thirty natural compounds of 19 Indian herbal plants were used to analyze their binding with eight proteins associated with COVID -19. Based on the molecular docking as well as ADMET analysis, isovitexin, glycyrrhizin, sitosterol, and piperine were identified as potential herbal medicine candidates. On comparing the binding affinity with Ivermectin, we have found that the inhibition potentials of the Trigonella foenum-graecum (fenugreek), Glycyrrhiza glabra (licorice), Tinospora cordifolia (giloy) and Piper nigrum (black pepper) are very promising with no side-effects.

6.
IOP Conference Series : Earth and Environmental Science ; 16, 2022.
Статья в английский | CAB Abstracts | ID: covidwho-2325714

Реферат

The main food consumption of farming families is an important concern during the pandemic. Farmers in West Nusa Tenggara (WNT) survive with the availability of rice to support household health and food security during the pandemic. In addition to its nutritional content, rice also contains phenolic compounds and has antioxidant activity. This study aims are to measure the frequency of rice consumption, food variety, varieties of rice consumed daily during the pandemic in WNT, as well as the antioxidant properties of several rice varieties grown in WNT. This study was conducted from September 2020 to June 2021 in East Lombok, Sumbawa and Bima Regencies, WNT Province, Indonesia using a survey approach. The data collection techniques were observation, Focus Group Discussion, recording, interviews with 74 respondents with a semi-structured questionnaire and study literature related to the nutritional content and bioactive compound of the rice. Quantitative data was tabulated to determine the frequency and average then descriptively analyzed, while qualitative data was thematically analysed. The most consumed rice varieties are seen from the production data of seed breeders in the WNT region, the phenolic content was determined using Folin-Ciocalteu, antioxidant activity was examined using DPPH assay. The result showed that the highest portion of food consumed by farmer households in WNT is rice. The most variety of rice produced by breeders is the Inpari 32 variety. There are about 97% of farmers consume rice for 3 times a day, while 3% of the remaining consume 2 times a day of rice. Food variety includes 7.9% vegetable-rice and 92.1% rice-vegetables-meat protein. The results of the analysis of antioxidant properties and phenolic content in rice is depending on the variety. The antioxidant properties of the Jeliteng, Baroma, Pamelen, Nutrizinc and Inpari 32 rice varieties were 44.85+or-0.51%, 9.87+or-1.55%, 9.96+or-1.22%, 9.75+or-1.09%, and 14.305+or-1.24%, respectively, while the phenolic contents were 9.76+or-0.09, 4.23+or-0.03, 4.48+or-0.02, 4.64+or- 0.07, 4.58+or-0.42 mg GAE/g dryrice extract, respectively. The results of this study indicate that rice has been used as one of antioxidants source for farming families during the pandemic.

7.
Journal of the Cameroon Academy of Sciences ; 18(Suppl):548-557, 2022.
Статья в английский | CAB Abstracts | ID: covidwho-2320950

Реферат

Facing the unprecedented burden and rapid spread of the Covid-19 pandemic across the globe, responses from various regions have been exceptionally quick. Drug discovery has been essentially based on repurposing, particularly at the onset of the scourge. Several experimental models have been designed ranging from in vitro cell culture systems to nonhuman primates;however, each with advantages and limitations. It was revealed beside its detrimental consequences on health, economy and the society, Covid-19 has also provided opportunity to highlight the immense potential of traditional medicine as a valid alternative for addressing major health threat. The African traditional medicine has been instrumental for the control of the COVID-19 pandemic in the continent, in situation of extremely low vaccination coverage. For optimal and sustainable use of traditional medicine, we strongly recommend products be developed following the WHO standards, while taking into consideration sustainability, environmental protection and copyright issues surrounding the natural product-based drug research and development.

8.
Avicenna Journal of Phytomedicine ; 13(3):265-279, 2023.
Статья в английский | CAB Abstracts | ID: covidwho-2319807

Реферат

Objective: Severe disease onset of COVID-19 may result in alveolar injury and respiratory failure. Apoptosis and inflammation are the main causes of respiratory distress syndrome. Berberine is used in medicine as an analgesic, anti-asthmatic, anti-inflammatory, and antiviral. In the current investigation, the effect of berberine on COVID-19 outpatients was studied. Materials and Methods: The present clinical trial was performed on 40 outpatients who were randomly assigned to berberine (300 mg, TID, 2 weeks) (n=19) or placebo groups (n=21). Both groups received standard therapy and they were monitored on days 3, 7, and 14 after the beginning of the therapy for clinical symptoms' improvement, quantitative CRP, lymphopenia, CBC, and SpO2. The severity and frequency of these symptoms and the level of the parameters were statistically compared between the two groups. Results: On days 0, 3, 7, and 14, there was no significant difference between the berberine and placebo groups in the improvement of clinical symptoms (cough, shortness of breath, nausea, loss of smell and taste, diarrhea, dizziness, sore throat, stomachache, body aches, and body temperature), quantitative CRP, lymphopenia, WBC, neutrophils, platelets, or SpO2. Conclusion: Berberine (300 mg, TID, two weeks) is ineffective in treating COVID-19. More research with a larger sample size is needed to investigate different berberine dosages in other pharmaceutical formulations.

9.
African Journal of Pharmacy and Pharmacology ; 17(1):1-9, 2023.
Статья в английский | CAB Abstracts | ID: covidwho-2319486

Реферат

Many studies have dealt with the medicinal properties of Jatropha curcas;however, there are limited studies on the scope of its antiviral potential. This is a fact associated with the current challenges posed by HIV-AIDS and COVID-19, which has reinforced the need to expand the knowledge about its antiviral resource. Based on the search for natural products with anti-HIV-1 and anti-SARS-CoV-2 activities, this work analyzed the extract of J. curcas seed, the structure of the plant whose antiviral references were not found in the literature, and the compounds that can potentiate it as a candidate for herbal medicine. GC-MS analysis was used to screen for the active substances of the J. curcas seeds, and the literature was searched to find those with anti-HIV-1 and anti-SARS-CoV-2 indication. The results showed they have 27 compounds, of which glycerol 1-palmitate, stigmasterol and gamma-sitosterol were shown to have antiviral action in the literature. Regarding glycerol 1-palmitate, no detailed description of its antiviral action was found. Stigmasterol and gamma-sitosterol act as anti-HIV-1 and anti-SARS-CoV-2, respectively, inhibiting the reverse transcriptase of HIV-1, the proteases 3CLpro, PLpro and the spike proteins of SARS-CoV-2. However, despite the fact that the extract of J. curcas seeds consist of antiviral compounds that fight against the etiological agents of HIV-AIDS and COVID-19, it is concluded that there is a need to deepen this evidence, by in vitro and in vivo assays.

10.
Plant Archives ; 22(2):184-192, 2022.
Статья в английский | CAB Abstracts | ID: covidwho-2318867

Реферат

The taxonomic diversity and the richness of the region of Seraidi (North-East Algeria) in medicinal plants, as well as the appearance of diseases of viral origin, in particular, the current pandemic of SARS-CoV-2, led us to the realization of an ethnobotanical survey of plants with antiviral interests. The survey was conducted based on a pre-established quiz, with 120 people from different categories of the population of Seraidi, with the aim of listing the medicinal plants used in the treatment of viral diseases and collecting as much information as possible on this subject. After analyzing, the information provided by the people interviewed, we listed 32 species belonging to 20 families, of which the Lamiaceae family is the most represented. Older women are the most affected by the use of plants;people without a higher intellectual level have the most knowledge about the use of plants with antiviral interest. The leaf is the most widely used organ, in the form of a decoction or infusion, administered orally.

11.
Journal of Mycology and Plant Pathology ; 51(4):338-346, 2021.
Статья в английский | CAB Abstracts | ID: covidwho-2317579

Реферат

In present manuscript describes synthesis of silver nanoparticles using turmeric leaves extract, traditional turmeric is a common spice that comes from the root of Curcuma longa, chemical called curcumin. Turmeric has a warm, bitter taste and is frequently used to flavor or color curry powders, mustards, butters, and cheeses. People commonly use turmeric for osteoarthritis, hay fever, depression, high cholesterol, liver disease, itching. There is also no good evidence to support using turmeric for COVID-19. Synthesis of silver nanoparticles AgNO powder was dissolved in distilled water to prepare 10 mM AgNO stock 3 3 solution from which different composition prepared. The AgNO solutions were mixed with urmeric plants 3 t leaves extract in equal proportion in flask. The flask was wrapped with an aluminum foil and was then heated in a water bath at 50-60 C for 2 hours. The synthesis of nanoparticles, which was confirmed by UVSpectra and TEM. UV-Vis spectra and visual observation showed that the color of the fresh leaf extractsof Vinca rosea turned into brownish yellow, respectively, after treatment with silver. In addition, TEM analysis confirmed that AgNO solutions for all concentrations produced ilver nanoparticles and their average size 3 s was less than 20 nm. Turmeric plants extract of fresh leaves can be used as bioreducing agents, drug resistant strains, toxic nature towards microbial agents, play an important role in nanoscience and nanotechnology, particularly in nanomedicine and potential applications in cancer diagnosis and therapy.

12.
The Thai Journal of Pharmaceutical Sciences ; 46(3):300-306, 2022.
Статья в английский | CAB Abstracts | ID: covidwho-2315819

Реферат

Porcine epidemic diarrhea virus (PEDV) has been affecting the swine industry, especially in suckling pigs in with a high mortality rate. Among all the strategies to overcome PEDV, boosting mucosal immunity in pig intestine via oral administration appears to be more efficient than other routes. However, there are biological obstacles such as acidic environment that could damage biologics, a product from organisms often used for PEDV treatment. The plant-derived 2C10 monoclonal antibody (mAb) from Nicotiana benthamiana produced by transient expression was revealed as one of the potential candidates against PEDV through oral delivery. Herein, we demonstrated the calcium-alginate microencapsulation system to protect the 2C10 mAb from the harsh condition in the stomach and to be released the 2C10 mAb when arriving in the intestine. The pH-responsive encapsulated 2C10 mAb microbeads were constructed from the calcium-alginate system. The microbeads were well-tolerated under the acidic environment of simulated gastric fluid (SGF) and were digested under the alkaline condition of simulated intestinal fluid (SIF). The encapsulated 2C10 mAb in the SPF-treated microbeads exhibited high virus neutralization efficiency in Vero cells when compared to the unencapsulated 2C10 mAb treated by SPF that cannot neutralize the virus. For these reasons, calcium-alginate microencapsulation system is an attractive platform to be considered as a candidate for the next generation of oral vaccine development.

13.
Indonesian Journal of Cancer Chemoprevention ; 13(3):166-174, 2022.
Статья в английский | CAB Abstracts | ID: covidwho-2315348

Реферат

SARS-CoV-2 genome encodes two large polyproteins (pp), pp1a and pp1ab which are cleaved and transformed into a mature form by a protease, non-structural protein 3 (NSP3). NSP3 is encoded by open reading frame (ORF) 1a/b. Curcuma longa (C. longa) or turmeric has been documented to have antiviral effects. The aim of this study was to assess the viral activities of C. longa against SARS-CoV-2 focusing on its potency to inhibit viral replication by targeting NSP3. PubChem databases were used to obtain the metabolic profile of C. longa. The compound's interaction with nucleocapsid was analyzed using molecular docking with Molegro Virtual Docker. Bioinformatics analysis based on rerank score presents all compounds of C. longa have higher binding affinity than the native ligand with cyclocurcumin as the lowest score (-128.38 kcal/mol). This anti-viral activity was hypothesized from the similarity of hydrogen bonds with amino acid residues Ser 128 and Asn 40 as key residues present in Ribavirin. This study reveals that C. longa is the potential to be developed as an antiviral agent through replication inhibition in SARS-CoV-2 targeting its replication mediated by NSP3.

14.
Avicenna Journal of Phytomedicine ; 13(3):231-239, 2023.
Статья в английский | CAB Abstracts | ID: covidwho-2314201

Реферат

Objective: Ephedra herbs are the only extant genus in its family, Ephedraceae, and order, Ephedrales. It has been prescribed in traditional medicine for improving headaches and respiratory infections. On the other hand, because the coronavirus disease 2019 (COVID-19) causes respiratory problems and COVID-19 pandemic is the most widespread outbreak that has affected humanity in the last century, the current review aims using literature search to investigate the effects of the Ephedra herbs compounds on COVID-19 to supply a reference for its clinical application in the inhibition and remedy of COVID-19. Materials and Methods: This review was performed using articles published in various databases, including Web of Science, PubMed, Scopus, and Google Scholar, without a time limit. For this paper, the following keywords were used: "Ephedra", "coronavirus disease 2019", "COVID-19", "Severe acute respiratory syndrome coronavirus 2" or "SARS CoV 2". Results: The results of this review show that the Ephedra herbs have effectiveness on COVID-19 and its compounds can bind to angiotensin-converting enzyme 2 (ACE2) with a high affinity and act as a blocker and prevent the binding of the virus. Conclusion: Some plants used in traditional medicine, including the Ephedra herbs, with their active compounds, can be considered a candidate with high potential for the control and prevention of COVID-19.

15.
Applied Sciences ; 13(9):5300, 2023.
Статья в английский | ProQuest Central | ID: covidwho-2313532

Реферат

The moisture levels in sausages that were stored for 16 days and added with different concentrations of orange extracts to a modification solution were assessed using response surface methodology (RSM). Among the 32 treatment matrixes, treatment 10 presented a higher moisture content than that of treatment 19. Spectral pre-treatments were employed to enhance the model's robustness. The raw and pre-processed spectral data, as well as moisture content, were fitted to a regression model. The RSM outcomes showed that the interactive effects of [soy lecithin concentration] × [soy oil concentration] and [soy oil concentration] × [orange extract addition] on moisture were significant (p < 0.05), resulting in an R2 value of 78.28% derived from a second-order polynomial model. Hesperidin was identified as the primary component of the orange extracts using high-performance liquid chromatography (HPLC). The PLSR model developed from reflectance data after normalization and 1st derivation pre-treatment showed a higher coefficient of determination in the calibration set (0.7157) than the untreated data (0.2602). Furthermore, the selection of nine key wavelengths (405, 445, 425, 455, 585, 630, 1000, 1075, and 1095 nm) could render the model simpler and allow for easy industrial applications.

16.
Mol Nutr Food Res ; : e2200804, 2023 May 11.
Статья в английский | MEDLINE | ID: covidwho-2318245

Реферат

SCOPE: The purpose of this study was to look into the antiviral activity of a plant extract derived from the roots of the Saussurea lappa as a food supplement against SARS-CoV-2 infection. METHODS AND RESULTS: Vero E6 cells are employed in the study to test the neutralizing effect of Saussurea lappa extract against the SARS-CoV-2 virus. For anti-viral activity detection, a sensitive real-time cell analyzer (xCELLigence RTCA) with a high repetition rate is used. A challenge experiment in mice is planned as a result of the in vitro analysis. A challenge test against SARS-CoV-2 is performed with 10 adult female K18-hACE2 transgenic mice in each group for this purpose. The mice in the S. lappa Group are gavaged 2 days before the virus is administered intranasally (i.n.). The control group received PBS instead of the extract. SARS-CoV-2 virus is administered i.n. under anesthesia for the first 3 days of the experiment, and S. lappa extract was administered by gavage in the afternoon. On the 10th day, mice in the S. lappa group survived the study, whereas animals in the control group grew ill and/or died. In this study, the extract protects the mice against the SARS-CoV-2 virus in 90% of the cases. CONCLUSIONS: This study demonstrates that the Saussurea plant has antiviral effects against SARS-CoV-2 in vitro and in animal models.

17.
Applied Sciences-Basel ; 12(2), 2022.
Статья в английский | Web of Science | ID: covidwho-2307540

Реферат

In October 2020, the SARS-CoV-2 B.1.617 lineage was discovered in India. It has since become a prominent variant in several Indian regions and 156 countries, including the United States of America. The lineage B.1.617.2 is termed the delta variant, harboring diverse spike mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD), which may heighten its immune evasion potentiality and cause it to be more transmissible than other variants. As a result, it has sparked substantial scientific investigation into the development of effective vaccinations and anti-viral drugs. Several efforts have been made to examine ancient medicinal herbs known for their health benefits and immune-boosting action against SARS-CoV-2, including repurposing existing FDA-approved anti-viral drugs. No efficient anti-viral drugs are available against the SARS-CoV-2 Indian delta variant B.1.617.2. In this study, efforts were made to shed light on the potential of 603 phytocompounds from 22 plant species to inhibit the Indian delta variant B.1.617.2. We also compared these compounds with the standard drug ceftriaxone, which was already suggested as a beneficial drug in COVID-19 treatment;these compounds were compared with other FDA-approved drugs: remdesivir, chloroquine, hydroxy-chloroquine, lopinavir, and ritonavir. From the analysis, the identified phytocompounds acteoside (-7.3 kcal/mol) and verbascoside (-7.1 kcal/mol), from the plants Clerodendrum serratum and Houttuynia cordata, evidenced a strong inhibitory effect against the mutated NTD (MT-NTD). In addition, the phytocompounds kanzonol V (-6.8 kcal/mol), progeldanamycin (-6.4 kcal/mol), and rhodoxanthin (-7.5 kcal/mol), from the plant Houttuynia cordata, manifested significant prohibition against RBD. Nevertheless, the standard drug, ceftriaxone, signals less inhibitory effect against MT-NTD and RBD with binding affinities of -6.3 kcal/mol and -6.5 kcal/mol, respectively. In this study, we also emphasized the pharmacological properties of the plants, which contain the screened phytocompounds. Our research could be used as a lead for future drug design to develop anti-viral drugs, as well as for preening the Siddha formulation to control the Indian delta variant B.1.617.2 and other future SARS-CoV-2 variants.

18.
Genetics & Applications ; 6(2):31-40, 2022.
Статья в английский | CAB Abstracts | ID: covidwho-2293636

Реферат

Essential role in replication and transcription of coronavirus makes the main protease of SARS-CoV-2 a great traget for drug design. The aim of this study was to predict structural interactions of compounds isolated from the Bosnian-Herzegovinian endemic plant Knautia sarajevensis (G. Beck) Szabo against the 3CLpro of SARS-CoV-2 virus. The three-dimensional crystal structure of SARS-CoV-2 main protease was retrieved from the RCSB Protein Data Bank and the three-dimensional structures of isolated compounds were obtained from the PubChem database. Active site was predicted using PrankWeb, while the preparation of protease and compounds was performed using AutoDock Tools and OpenBabel. Molecular docking was carried out using AutoDock Vina. Structural interactions are visualised and analyzed using PyMOL, LigPlus and UCSF Chimera. Apigenin, kaempferol, myricetin and quercetin showed the highest binding affinity for SARS-CoV-2 main protease and formed significant hydrogen bonds with the given protein. Results obtained in this study are in accordance with previous studies and showed that these compounds could potentially have antiviral effects against SARS-CoV-2. These findings indicate that K. sarajevensis could be potentially utilized as an adjuvant in the treatment of coronavirus disease 2019, but further pharmacological studies are required in order to prove the potential medicinal use of the plant.

19.
Postepy Fitoterapii ; 2:107-119, 2022.
Статья в Польский | CAB Abstracts | ID: covidwho-2292353

Реферат

The study is a review of natural raw materials that can prevent infection and help treat viral infections, including those that cause COVID-19. The condition of not getting infected with pathogens that cause infections of the upper and lower respiratory tract is high the body resistance. An important element that influences the proper immunity of the body is the diet. The functioning of the immune system is improved by bee products, and plant materials: purple coneflower herb, flower and root, licorice root, aloe gel and Baikal skullcap root, as well as black cumin seed oil, chaga mushroom, lemon balm leaves and chamomile flowers. Strengthening immunity is conducive to maintaining a good mood and reducing stress. The antiviral activity has been confirmed for many plant materials, especially those containing essential oils. Natural products can be used for prevention and treatment. The country that copes best with the coronavirus epidemic is China, thanks to a combination of academic and natural medicine. The study quotes an excerpt from the "Handbook of COVID-19 Prevention and Treatment", prepared by Chinese doctors, with particular attention to the recipes used by them.

20.
Cosmetics ; 10(2):43, 2023.
Статья в английский | ProQuest Central | ID: covidwho-2302826

Реферат

Dendrobium sulcatum Lindl or "Ueang Jampa-Nan” (Orchidaceae family) is widely dis-tributed in Thailand and Laos. It is classified in the genus Dendrobium, which is used in both traditional Chinese medicine and Ayurvedic medicine for health enhancement and anti-aging. The purpose of this study was to investigate the phytochemical constituents and bioefficacy of stems, leaves and flowers from D. sulcatum for cosmetic and cosmeceutical applications. Phenolic and flavonoid contents were tested for the phytochemical evaluation. The antioxidant (DPPH, FRAP and ABTS assays), anti-lipid peroxidation, antiglycation, anti-inflammatory and anti-tyrosinase properties were assessed for their bioefficacy. The results showed that the extracts of stem and leaf had higher total phenolic content than that of the flower, and the leaf extract had the highest flavonoid content. The antioxidant, anti-lipid peroxidation and anti-inflammatory activities of the extracts were greater in those from the stem and leaf compared with that of the flower. The leaf extract exhibited the greatest antiglycation property. The results of anti-tyrosinase analysis of the extracts showed that the leaf and flower exhibited potent activities with a percentage inhibition greater than 70% (at a concentration of 50 µg/mL). In conclusion, these findings suggest that the ethanolic extracts from different parts of D. sulcatum are promising sources of natural active ingredients for further cosmetic and cosmeceutical products.

Критерии поиска